Pade approximant method for the statistical thermodynamics of a quantum system. II. Quartic anharmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 171891
(http://iopscience.iop.org/0305-4470/17/9/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:45

Please note that terms and conditions apply.

Padé approximant method for the statistical thermodynamics of a quantum system: II. Quartic anharmonic oscillator

W G Gibson
Department of Applied Mathematics, The University of Sydney, NSW 2006, Australia

Received 2 Feburary 1982, in final form 19 December 1983

Abstract

A method of successive approximation involving two-point Padé approximants developed in a previous paper is applied to the quartic oscillator and to the anharmonic oscillator with quartic anharmonicity. The input data are the first three energy levels and the coefficients in a high-temperature series derived from the first three terms of the Wigner-Kirkwood series. The method gives an approximate expression for the partition function which is then differentiated to find the internal energy and the heat capacity. Good results are obtained at all temperatures and for a wide range of anharmonicities.

1. Introduction

This paper is concerned with the equilibrium thermodynamics of a quantum system with the Hamiltonian

$$
\begin{equation*}
H=p^{2} / 2 m+V(x) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
V(x)=\frac{1}{2} m \omega^{2} x^{2}+\mu x^{4} \tag{1.2}
\end{equation*}
$$

with $\mu>0$.
The energy eigenvalues E_{n} of this system have been extensively investigated, the most comprehensive study being that of Hioe and Montroll (1975) (see also Hioe et al 1978). They develop numerical methods for obtaining very accurate eigenvalues, and also give formulae for approximating E_{n} in various (λ, n) regions. ($\lambda=\mu \hbar / m^{2} \omega^{3}$.) These eigenvalues can then be used to calculate the various thermodynamic properties of the system. This procedure works well at low temperatures (low T) where only a few eigenvalues are needed, but is less satisfactory at high temperatures (high T) where many terms must be included in order to achieve reasonable accuracy.

An early investigation is that of Schwartz (1976), who used the Hioe-Montroll eigenvalues to calculate numerically the heat capacity (results given graphically only), and to develop low- T and high- T approximations which, however, have only very restricted validity (Witschel and Bohmann 1980).

Pant and Mitra (1979) used an interpolation formula to approximate the energy eigenvalues for all n and $\lambda \geqslant 0$, and then used these values to calculate the heat capacity. The accuracy of their approximation depends on λ and n, and although they show
how systematically to improve the interpolation formula, this destroys the simplicity of the method.

A somewhat different approach was taken by Witschel and Bohmann (1980). They used variational methods to derive upper and lower bounds to the partition function, and also calculated terms in a perturbation expansion up to second order in λ. Again, these techniques work quite well in some regions, but fail badly in others. In a subsequent paper (Witschel 1981) these bounds are supplemented by the first WignerKirkwood (wK) correction term, which gives good high-temperature results.

In the present work, we apply a method of successive approximation involving two-point Padé approximants (Gibson 1984. This paper will subsequently be referred to as I). This enables us to calculate accurate values of the partition function for all temperatures and for all values of $\lambda \geqslant 0.01$. The input for this method is the first three energy levels, and a high- T expansion which is derived from the first three terms of the wk series. The approximate partition function is given in analytic form, and can be differentiated to find the internal energy and heat capacity. The whole calculation parallels that given for the harmonic oscillator in I.

Before treating the anharmonic oscillator with potential (1.2), we do the corresponding calculations for the pure quartic oscillator with potential

$$
\begin{equation*}
V(x)=\mu x^{4} . \tag{1.3}
\end{equation*}
$$

This case is simpler in that there is only one parameter involved, and only one set of eigenvalues is needed. Previous work on the thermodynamics of this system includes that of Miller (1971), Schwartz (1976), Witschel and Bohmann (1980), and Witschel (1980).

2. Quartic oscillator

2.1. Partition function

For the quartic oscillator with potential (1.3) the partition function is

$$
\begin{equation*}
Q=\sum_{n=0}^{\infty} \mathrm{e}^{-\tau \varepsilon_{n}} \tag{2.1}
\end{equation*}
$$

where $\tau=\beta\left(\hbar^{2} \mu^{1 / 2} / m\right)^{2 / 3}$. Accurate values of ε_{n} are given by Hioe and Montroll (1975). At low T, we approximate Q by the first three terms of this series:

$$
\begin{equation*}
Q \sim \mathrm{e}^{-\tau \varepsilon_{0}}+\mathrm{e}^{-\tau \varepsilon_{1}}+\mathrm{e}^{-\tau \varepsilon_{2}}+\ldots, \quad \tau \rightarrow \infty \tag{2.2}
\end{equation*}
$$

where

$$
\varepsilon_{0}=0.667986259, \quad \varepsilon_{1}=2.39364402, \quad \varepsilon_{2}=4.69679539 .
$$

At high T the wk series is applicable. The classical limit plus the first two correction terms are (see appendix 1 for details)

$$
\begin{equation*}
Q=\alpha_{0} \tau^{-3 / 4}+\alpha_{1} \tau^{3 / 4}+\alpha_{2} \tau^{9 / 4}+\mathrm{O}\left(\tau^{15 / 4}\right), \quad \tau \rightarrow 0 \tag{2.3}
\end{equation*}
$$

where
$\alpha_{0}=\Gamma\left(\frac{1}{4}\right) / 2(2 \pi)^{1 / 2}, \quad \alpha_{1}=-\Gamma\left(\frac{3}{4}\right) / 4(2 \pi)^{1 / 2}, \quad \alpha_{2}=11 \Gamma\left(\frac{1}{4}\right) / 960(2 \pi)^{1 / 2}$.
After making the change of variable $u=\tau^{1 / 4}$ we can implement the approximation
scheme of I , using successively 1,2 and 3 terms from each of (2.2) and (2.3). Let

$$
\begin{equation*}
[N / N]=\frac{p_{0}+p_{1} u+\ldots+p_{N} u^{N}}{1+q_{1} u+\ldots+q_{N} u^{N}} \tag{2.4}
\end{equation*}
$$

be the N th diagonal Padé approximant (see the appendix of I). The results are

$$
\begin{align*}
& Q \simeq \mathrm{e}^{-\varepsilon_{0} u^{4}}\left(\alpha_{0} / u^{3}+[3 / 3]\right), \tag{2.5}\\
& Q \simeq \mathrm{e}^{-\varepsilon_{0} u^{4}}+\mathrm{e}^{-\varepsilon_{1} u^{4}}\left(\alpha_{0} / u^{3}+[6 / 6]\right), \tag{2.6}\\
& Q \simeq \mathrm{e}^{-\varepsilon_{0} u^{4}}+\mathrm{e}^{-\varepsilon_{1} u^{4}}+\mathrm{e}^{-\varepsilon_{2} u^{4}}\left(\alpha_{0} / u^{3}+[9 / 9]\right) . \tag{2.7}
\end{align*}
$$

The coefficients for these three Padé approximants are given in table 1.

Table 1. Coefficients for the Padé approximants in equations (2.5), (2.6) and (2.7).

n	[3/3]		[6/6]		[9/9]	
	p_{n}	q_{n}	p_{n}	q_{n}	p_{n}	q_{n}
0	0.0	1.0	-1.0	1.0	-2.0	1.0
1	0.483091	0.483091	2.367576	-0.636482	1.864889	0.765928
2	0.233377	0.233377	-1.113 463	0.011653	0.230354	1.185653
3	1.382734	1.382734	-0.076145	-0.025900	0.079869	1.912635
4			-0.846 352	-0.846 352	0.599496	-0.264 167
5			0.851811	0.851811	0.315669	0.884599
6			0.069476	0.069476	0.441453	0.465886
7					-0.537381	-0.537381
8					1.262858	1.262858
9					0.033784	0.033784

All the poles of these approximants lie outside the region of analyticity of Q (which is $|\arg u|<\pi / 8)$. We have also calculated a number of other approximants using different combinations of terms from (2.2) and (2.3) and found that the situation is qualitatively similar to that of the rigid rotator ($\S 4$ of I): the inclusion of too many high- T terms causes poles to appear in $|\arg u|<\pi / 8$; the inclusion of too few leads to slow convergence in the intermediate-to-large temperature range. The approximations (2.5)-(2.7) lie between these two cases.

Some values calculated from each of these approximations are shown in table 2. The exact values are calculated from (2.1), using values for ε_{n} given by Hioe and Montroll (1975). For $n \leqslant 10$ we use the nine-figure values listed in table IV of that paper (note the misprint in ε_{0}-it should be $0.667 \ldots$), and for $n \geqslant 11$ we use the wкв-type approximation (Hioe and Montroll 1975)

$$
\begin{equation*}
\varepsilon_{n} \simeq 1.37650740\left[n+\frac{1}{2}+0.02650 /\left(n+\frac{1}{2}\right)\right]^{4 / 3} \tag{2.8}
\end{equation*}
$$

which is accurate to at least eight significant figures in this region.
A comparison of table 2 with the corresponding table for the simple harmonic oscillator (table 1 of I) shows that convergence is similar, though a bit slower in the present case. However, the third approximation (2.7) is giving four-figure accuracy, and this is satisfactory.

Table 2. Comparison of different approximations to the partition function for the quartic oscillator. I, II and III are from equations (2.5), (2.6) and (2.7) respectively. EXACT is from (2.1) using the eigenvalues of Hioe and Montroll (1975). ($-n$) means the corresponding entry is to be multiplied by 10^{-n}.

τ^{-1}	I	II	III	EXACT
0.1	$1.29639(-3)$	$1.25595(-3)$	$1.25595(-3)$	$1.25595(-3)$
0.5	$3.13804(-1)$	$2.73668(-1)$	$2.71319(-1)$	$2.71321(-1)$
1.0	$7.18113(-1)$	$6.33195(-1)$	$6.13751(-1)$	$6.13850(-1)$
2.0	1.28781	1.16889	1.14649	1.14676
5.0	2.51545	2.38910	2.38196	2.38206
10.0	4.15168	4.04726	4.04521	4.04524

2.2. Thermodynamic quantities

As pointed out in $\S 2.2$ of I, we can find thermodynamic quantities either by differentiating the partition function, or by developing further series and fitting Padé approximants to them. Our experience with the harmonic oscillator indicates that the differentiation method works well, and as it is the easiest to implement we use it here also. Thus we have calculated the internal energy and heat capacity using our approximations for Q, (2.5)-(2.7), in equations (2.11) and (2.12) of I. Analytic differentiation becomes cumbersome for the higher approximations so we have differentiated numerically, a procedure which is fast and accurate for this type of function.

Table 3 shows values of $\varepsilon=\left(\hbar^{2} \mu^{1 / 2} / m\right)^{-2 / 3} E$ and C_{V} / k calculated using (2.7). These are compared with the exact values calculated from

$$
\begin{equation*}
\varepsilon=\frac{1}{Q} \sum_{n=0}^{\infty} \varepsilon_{n} \mathrm{e}^{-\tau \varepsilon_{n}} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{V} / k=\frac{1}{Q} \sum_{n=0}^{\infty}\left(\tau \varepsilon_{n}\right)^{2} \mathrm{e}^{-\tau \varepsilon_{n}}-(\tau \varepsilon)^{2}, \tag{2.10}
\end{equation*}
$$

using the Hioe-Montroll eigenvalues ε_{n}, as discussed in $\S 2.1$ above. The agreement

Table 3. Internal energy ε and heat capacity C_{V} / k for the quartic oscillator. The approximate values are from differentiating (2.7). The exact values are from (2.9) and (2.10).

τ^{-1}	ε		C_{V} / k	
	APPROX.	EXACT	APPROX.	EXACT
0.1	0.667986	0.667986	$9.53834(-6)$	9.53834 (-6)
0.5	0.722222	0.722246	0.373995	0.374352
1.0	0.991841	0.992193	0.631836	0.632006
2.0	1.67480	1.67443	0.709678	0.708939
5.0	3.86297	3.86240	0.738896	0.739026
10.0	7.58009	7.57991	0.746004	0.746041
100.0	75.0254	75.0254	0.749873	0.749873

is satisfactory-the approximant values are very accurate in the low- T and high- T regions, and no more than 0.1% in error at medium temperatures.

Thus we have established that our approximation scheme works well for the quartic oscillator, and we now apply it to the more complicated case of the anharmonic oscillator.

3. Anharmonic oscillator

The partition function for the anharmonic oscillator with potential (1.2) is

$$
\begin{equation*}
Q=\sum_{n=0}^{\infty} e^{-t E_{n}} \tag{3.1}
\end{equation*}
$$

where $t=\beta \hbar \omega$ and E_{n} is now measured in units of $\hbar \omega$. A complication is that the E_{n} 's are no longer constants, but depend on the potential strength through the parameter $\lambda=\mu \hbar / m^{2} \omega^{3}$.

At low T, Q is represented by the leading terms of (3.1). At high T we again use the $w k$ series, and the first three terms are given in appendix 1 . However, unlike the quartic oscillator case, these no longer yield single terms but rather infinite series in powers of $t^{1 / 2}$. These series are truncated and combined to give the following high- T expansion (see appendix 1 for details):

$$
\begin{equation*}
Q=\theta_{0} u^{-3}+\theta_{1} u^{-1}+\theta_{2} u+\ldots+\theta_{8} u^{13}+\mathrm{O}\left(u^{15}\right), \quad u \rightarrow 0 \tag{3.2}
\end{equation*}
$$

where $u=t^{1 / 4}$, and the θ_{n} 's are functions of λ given explicitly by equations (A1.13)(A1.21) of appendix 1. It is important to note that (3.2) is not the wK series, but rather a rearrangement of it. The wk series gives an expansion for Q in powers of \hbar^{2}, with coefficients that are functions of β (see equations (A1.1)-(A1.4)). We have expanded these coefficients in powers of $\beta^{1 / 2}$, and then collected terms so that we have a series in powers of $\beta^{1 / 2}$ with coefficients that are functions of h.

At this stage the problem essentially parallels that of the quartic oscillator, with the added complication that the energy levels E_{n} and the coefficients θ_{n} are functions of λ. Thus the Padé fitting must be done for each value of λ-however, this is not too serious a drawback since the whole procedure is readily programmed for computer and can be re-run for each λ value.

We have calculated a number of approximations to Q, and found that the behaviour is similar to that found for the quartic oscillator. Again, one has to maintain a balance between low- T and high- T terms in order to keep poles out of the region $|\arg u|<\pi / 8$. We do not give details of all these approximations, but instead concentrate on the third, which uses the first three energy levels and all the coefficients, θ_{0} to θ_{8}, of (3.2). The detailed equations are given in appendix 2 . The highest order approximant which can be formed is [9/9]. However, this has a defect (pole-zero pair) on the positive real axis, the exact position depending on the value of λ. Although the numerical values at points away from this defect are very good, we prefer to use the [8/8] approximant formed from a_{0} to a_{12} and b_{0} to b_{3} of appendix 2 . This has no singularities in $|\arg u|<\pi / 8$ and is thus reliable for all real u. In this approximation Q is given by

$$
\begin{equation*}
Q \simeq \mathrm{e}^{-E_{0} u^{4}}+\mathrm{e}^{-E_{1} u^{4}}+\mathrm{e}^{-E_{2} u^{4}}\left(\frac{\theta_{0}}{u^{3}}+\frac{\theta_{1}}{u}+[8 / 8]\right) . \tag{3.3}
\end{equation*}
$$

Table 4 lists the values of the coefficients in [8/8] for $\lambda=0.01,1.0$ and 50.0 and table 5 shows values of $Q, E / \hbar \omega$ and C_{V} / k for $\lambda=0.01,1.0$ and 50.0.

Table 4. Coefficients for the Padé approximant in equation (3.3) for various values of λ.

n	$\lambda=0.01$		$\lambda=1.0$		$\lambda=50.0$	
	p_{n}	q_{n}	p_{n}	q_{n}	p_{n}	q_{n}
0	-2.0	1.0	-2.0	1.0	-2.0	1.0
1	10.726288	1.172850	1.928799	0.919744	2.388578	1.176952
2	9.181599	3.074943	0.558472	1.453694	0.561663	2.510007
3	10.937514	3.564254	0.131786	2.293556	0.403372	5.530977
4	11.522496	2.987952	0.921132	0.103303	2.536610	-0.140 564
5	6.067855	3.056494	0.202202	1.323277	0.453326	5.761979
6	2.132229	0.949284	0.768983	0.805236	4.883461	4.903865
7	1.417199	0.306077	-0.090 532	-0.296618	-3.011433	-3.139 069
8	0.287493	0.287493	1.686229	1.686229	19.636563	19.636563

The approximate values are calculated from (3.3) and its derivatives. The exact values are obtained by using the energy eigenvalues E_{n} in (3.1) for Q, and in equations analogous to (2.9) and (2.10) for $E / \hbar \omega$ and C_{V} / k. The method used for calculating E_{n} depends on λ and n. For $\lambda=50.0$ and 1.0 , we use the accurate values for $n \leqslant 8$ and, for $n>8$, the wkb-type formula (Hioe and Montroll 1975)
$E_{n}=C \lambda^{1 / 3}\left[n+\frac{1}{2}+\delta /\left(n+\frac{1}{2}\right)\right]^{4 / 3}+a \lambda^{-1 / 3}\left[n+\frac{1}{2}+\delta /\left(n+\frac{1}{2}\right)\right]^{2 / 3}+b \lambda^{-1}$,
where $C=1.37650740, a=0.268055493, b=-0.011674983$ and $\delta=0.02650$. The accuracy of (3.4) depends both on n and on λ : it is more accurate for large λ, but even for λ as small as 0.1 it still gives five-figure accuracy for $n=8$. However, for $\lambda=0.01$ (3.4) is no longer accurate enough (even for quite large n), and there is no other simple formula valid in this region. We therefore calculated the first 50 energy levels, accurate to at least six decimal places, using the method of Banerjee et al (1978). These are sufficient to give $Q, E / \hbar \omega$ and C_{V} / k to six figures for $t^{-1} \leqslant 0.3$; at higher temperatures the accuracy is reduced, and in table 5 we give only the number of decimal places we consider to be valid.

It is seen from table 5 that agreement between approximate and exact results is excellent for $\lambda=50.0$ and 1.0 , and still good for $\lambda=0.01$. We would expect our scheme to become increasingly inaccurate as λ becomes very small, since the region of validity of both the high- T and the low- T series is diminished. This can be seen by examining the λ-dependence of θ_{n} and E_{n} : as λ decreases, the θ_{n} 's become larger (see equations (A1.13)-(A1.21)), and the terms in (3.2) fall off more slowly. Correspondingly, the E_{n} 's become smaller and more closely spaced, so that more terms are needed in (3.1) to achieve the same accuracy. In particular, the θ_{n} 's diverge as $\lambda \rightarrow 0$, and the harmonic oscillator results are not recovered in this limit. This divergence can be traced to the expansion we have made in evaluating the wK coefficients (see appendix 1)-expanding $\mathrm{e}^{-a x^{2}}$ in (A1.8) and integrating term by term is invalid when $\lambda=0$.
Table 5. Partition function Q, internal energy $E / \hbar \omega$ and heat capacity C_{V} / k for the anharmonic oscillator for various values of λ. The approximate values are based on (3.3). The exact values use either accurate eigenvalues E_{n} or asymptotic approximations to them, as explained in the text.

t^{-1}	Q		$E / \hbar \omega$		C_{V} / k	
	APPROX	EXACT	APPROX.	EXACT	APPROX	EXACT
	$\lambda=0.01$					
0.1	$6.26656(-3)$	$6.26656(-3)$	0.507291	0.507291	$3.61475(-3)$	$3.61480(-3)$
0.5	0.414997	0.415286	0.655145	0.656028	0.693460	0.696061
1.0	0.928970	0.930299	1.06409	1.06382	0.882235	0.877922
2.0	1.88190	1.88323	1.97026	1.96787	0.913064	0.912754
5.0	4.52868	4.52908	4.67731	4.6761	0.890176	0.8905
10.0	8.56978	8.5699	9.05140	9.051	0.862353	0.862
100.0	62.0271		81.9739		0.791248	
	$\lambda=1.0$					
0.1	3.23049 (-4)	$\cdot 3.23049$ (-4)	0.803771	0.803771	$1.48999(-6)$	$1.48999(-6)$
0.5	0.204597	0.204599	0.844005	0.844034	0.311266	0.311726
1.0	0.518220	0.518350	1.09735	1.09800	0.626161	0.627051
2.0	1.02200	1.02249	1.79328	1.79288	0.730481	0.728867
5.0	2.21469	2.21496	4.04126	4.03985	0.756530	0.756774
10.0	3.84062	3.84069	7.83341	7.83286	0.759043	0.759141
100.0	22.4865	22.4865	75.8538	75.8538	0.754095	0.754095
	$\lambda=50.0$					
0.1	$1.39285(-11)$	$1.39285(-11)$	2.49971	2.49971	-	-
0.5	$6.74189(-3)$	$6.74189(-3)$	2.49973	2.49973	$4.40726(-4)$	$4.40726(-4)$
1.0	8.22433 (-2)	$8.22433(-2)$	2.51019	2.51019	$6.71903(-2)$	$6.71934(-2)$
2.0	0.298296	0.298302	2.75699	2.75728	0.413527	0.414435
5.0	0.809822	0.810183	4.55112	4.55270	0.679784	0.678451
10.0	1.46159	1.46206	8.10016	8.09558	0.725635	0.725129
100.0	8.56965	8.56965	75.2986	75.2984	0.749698	0.749702

This non-commutivity of the limits $\lambda \rightarrow 0$ and $T \rightarrow \infty$ is also apparent in figure 1 , where we graph the heat capacity as a function of temperature for $\lambda=0,0.01,1.0$ and 50.0. (The values are either exact or approximate; the difference does not show on a graph of this scale.) As $T \rightarrow \infty, C_{V} / k \rightarrow 0.75$, except for the case $\lambda=0$ where the limit is 1 . Thus, although the $\lambda=0$ and $\lambda=0.01$ curves are close at low T, they separate as T increases. As already pointed out by other authors (Hioe and Montroll 1975, Schwartz 1976) this is related to the fact that, even for very small anharmonicity, the quartic term still dominates for sufficiently large mean displacement of the oscillator from its equilibrium position. Since the contribution to thermodynamic quantities from such states becomes increasingly important at high T, the limiting behaviour is that of a quartic oscillator.

Figure 1. Heat capacity for the anharmonic oscillator as a function of temperature, for $\lambda=0,0.01,1.0$ and 50.0 .

4. Conclusion

We have shown that the method of successive approximation developed in I is applicable to the quartic oscillator and to the anharmonic oscillator for a wide range of values of λ. Since the method uses only low- T and high- T information, it completely side-steps the problem of calculating a large number of high energy levels, or of using approximations for them. This is particularly useful in the case of the anharmonic oscillator with λ small, since here there is no simple asymptotic formula for E_{n} when n is large. But even in the other cases the Pade approximant method is still a simpler and more economical way of investigating the medium-to-high-temperature behaviour.

The scheme is also straightforward mathematically. The most tedious part is calculating the coefficients in the high- T series for Q. The remainder consists of solving a set of linear equations to find the Padé coefficients, and subsequent (numerical) differentiation if E and C_{V} are required.

It is envisaged that the method has application to more complex systems, where the calculation of many energy eigenvalues is either difficult or impossible with current methods. Examples are the double well anharmonic oscillator (Witschel 1981) and systems of coupled oscillators (Witschel and Bohmann 1980, Hioe et al 1978).

Appendix 1. Wigner-Kirkwood expansion

The wk expansion (Wigner 1932, Kirkwood 1933) has the form

$$
\begin{equation*}
Q=Q^{\mathrm{C}}+\frac{\hbar^{2} \beta}{2 m} Q_{\mathrm{I}}+\left(\frac{\hbar^{2} \beta}{2 m}\right)^{2} Q_{\mathrm{II}}+\ldots \tag{A1.1}
\end{equation*}
$$

In the one-dimensional case the leading terms are (e.g. Hill 1968):

$$
\begin{gather*}
Q^{\mathrm{C}}=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{1 / 2} \int_{-\infty}^{\infty} \mathrm{e}^{-\beta V} \mathrm{~d} x, \tag{A1.2}\\
Q_{\mathrm{I}}=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{1 / 2}\left(\frac{-1}{12}\right) \int_{-\infty}^{\infty} \mathrm{e}^{-\beta V}\left(\beta V^{\prime}\right)^{2} \mathrm{~d} x, \tag{A1.3}\\
Q_{\mathrm{II}}=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{1 / 2} \frac{1}{1440} \int_{-\infty}^{\infty} \mathrm{e}^{-\beta V}\left[\left(\beta V^{\prime}\right)^{4}-8\left(\beta V^{\prime}\right)^{2} \beta V^{\prime \prime}+12\left(\beta V^{\prime \prime}\right)^{2}\right] . \tag{A1.4}
\end{gather*}
$$

For the quartic oscillator potential (1.3) the integrals in (A1.2)-(A1.4) are straightforward, and we get:

$$
\begin{align*}
& Q^{\mathrm{C}}=\left[\Gamma\left(\frac{1}{4}\right) / 2(2 \pi)^{1 / 2}\right] \tau^{-3 / 4}, \tag{A1.5}\\
& \left(\hbar^{2} \beta / 2 m\right) Q_{\mathrm{I}}=-\left[\Gamma\left(\frac{3}{4}\right) / 4(2 \pi)^{1 / 2}\right] \tau^{3 / 4}, \tag{A1.6}\\
& \left(\hbar^{2} \beta / 2 m\right)^{2} Q_{\mathrm{II}}=\left[11 \Gamma\left(\frac{1}{4}\right) / 960(2 \pi)^{1 / 2}\right] \tau^{9 / 4}, \tag{A1.7}
\end{align*}
$$

where $\tau=\beta\left(\hbar^{2} \mu^{1 / 2} / m\right)^{2 / 3}$. It can be seen on dimensional grounds that the next term, $\left(\hbar^{2} \beta / 2 m\right)^{3} Q_{\mathrm{II}}$, must be proportional to $\tau^{15 / 4}$. Thus we have established (2.3).

For the anharmonic oscillator potential (1.2) we strike integrals of the type

$$
\begin{equation*}
I_{n}=\int_{-\infty}^{\infty} x^{n} \mathrm{e}^{-a x^{2}} \mathrm{e}^{-b x^{4}} \mathrm{~d} x \tag{A1.8}
\end{equation*}
$$

These can be evaluated in terms of parabolic cylinder functions (Witschel 1981), but for our purposes it is better to expand the first exponential and integrate term by term. This procedure leads to:

$$
\begin{align*}
& Q^{\mathrm{C}}=\frac{1}{2(2 \pi)^{1 / 2}} \frac{1}{t^{3 / 4} \lambda^{1 / 4}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{t}{4 \lambda}\right)^{n / 2} \Gamma\left(\frac{2 n+1}{4}\right), \tag{A1.9}\\
& \frac{\hbar^{2} \beta}{2 m} Q_{1}=-\frac{1}{3(2 \pi)^{1 / 2}} t^{3 / 4} \lambda^{1 / 4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{t}{4 \lambda}\right)^{n / 2} \\
& \times\left[\Gamma\left(\frac{2 n+7}{4}\right)+\Gamma\left(\frac{2 n+5}{4}\right)\left(\frac{t}{4 \lambda}\right)^{1 / 2}+\frac{1}{4} \Gamma\left(\frac{2 n+3}{4}\right)\left(\frac{t}{4 \lambda}\right)\right] \tag{A1.10}\\
&\left(\frac{\hbar^{2} \beta}{2 m}\right)^{2} Q_{\mathrm{II}}= \frac{1}{720(2 \pi)^{1 / 2} t^{9 / 4} \lambda^{3 / 4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{t}{4 \lambda}\right)^{n / 2}} \\
& \times\left\{\left[16 \Gamma\left(\frac{2 n+13}{4}\right)-96 \Gamma\left(\frac{2 n+9}{4}\right)+108 \Gamma\left(\frac{2 n+5}{4}\right)\right]\right. \\
&+\left[32 \Gamma\left(\frac{2 n+11}{4}\right)-112 \Gamma\left(\frac{2 n+7}{4}\right)+36 \Gamma\left(\frac{2 n+3}{4}\right)\right]\left(\frac{t}{4 \lambda}\right)^{1 / 2}
\end{align*}
$$

$$
\begin{align*}
& +\left[24 \Gamma\left(\frac{2 n+9}{4}\right)-40 \Gamma\left(\frac{2 n+5}{4}\right)+3 \Gamma\left(\frac{2 n+1}{4}\right)\right]\left(\frac{t}{4 \lambda}\right) \\
& \left.+\left[8 \Gamma\left(\frac{2 n+7}{4}\right)-4 \Gamma\left(\frac{2 n+3}{4}\right)\right]\left(\frac{t}{4 \lambda}\right)^{3 / 2}+\Gamma\left(\frac{2 n+5}{4}\right)\left(\frac{t}{4 \lambda}\right)^{2}\right\} \tag{A1.11}
\end{align*}
$$

(A1.10) has previously been obtained by Witschel (1981). It is again clear that the next term in (A1.1) is $\mathrm{O}\left(t^{15 / 4}\right)$ so we need only keep terms up to $t^{13 / 4}$ in (A1.9)-(A1.11). Adding the truncated series and collecting terms gives

$$
\begin{equation*}
Q=\sum_{n=0}^{8} \theta_{n} t^{(2 n-3) / 4}+\mathrm{O}\left(t^{15 / 4}\right) \tag{A1.12}
\end{equation*}
$$

If we introduce $\xi=\Gamma\left(\frac{1}{4}\right) /(2 \pi)^{1 / 2}$ and $\eta=\Gamma\left(\frac{3}{4}\right) /(2 \pi)^{1 / 2}$, these coefficients are:

$$
\begin{align*}
& \theta_{0}=(\xi / 2) \lambda^{-1 / 4}, \quad \theta_{1}=-(\eta / 4) \lambda^{-3 / 4}, \quad \theta_{2}=(\xi / 64) \lambda^{-5 / 4}, \tag{A1.13,14,15}\\
& \theta_{3}=-(\eta / 128)\left(1+32 \lambda^{2}\right) \lambda^{-7 / 4}, \quad \theta_{4}=(\xi / 12288)\left(5+128 \lambda^{2}\right) \lambda^{-9 / 4}, \tag{A1.16,17}\\
& \theta_{5}=-(\eta / 122880)\left(21+1600 \lambda^{2}\right) \lambda^{-11 / 4}, \tag{A1.18}\\
& \theta_{6}=(\xi / 5898240)\left(45+5760 \lambda^{2}+67584 \lambda^{4}\right) \lambda^{-13 / 4}, \tag{A1.19}\\
& \theta_{7}=-(\eta / 11796480)\left(33+6240 \lambda^{2}+153600 \lambda^{4}\right) \lambda^{-15 / 4}, \tag{A1.20}\\
& \theta_{8}=(\xi / 5284823044)\left(585+152320 \lambda^{2}+9920512 \lambda^{4}\right) \lambda^{-17 / 4} . \tag{A1.21}
\end{align*}
$$

Appendix 2. Third approximation for anharmonic oscillator

For the third approximation we define

$$
\begin{equation*}
Q_{3}=\mathrm{e}^{t E_{2}}\left(Q-\mathrm{e}^{-t E_{0}}-\mathrm{e}^{-t E_{1}}\right) \tag{A2.1}
\end{equation*}
$$

Setting $t=u^{4}$, expanding the exponentials and using (3.2) for Q leads to

$$
\begin{equation*}
Q_{3}-\theta_{0} u^{-3}-\theta_{1} u^{-1}=\tilde{Q}_{3} \tag{A2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{Q}_{3}=\sum_{n=0}^{14} a_{n} u^{n}+\mathrm{O}\left(u^{15}\right), \quad u \rightarrow 0, \tag{A2.3}\\
& \tilde{Q}_{3}=\sum_{n=0}^{3} b_{n} u^{-n}+\mathrm{O}\left[\exp \left(-E_{3,2} u^{4}\right)\right], \quad u \rightarrow \infty \tag{A2.4}
\end{align*}
$$

The coefficients are:

$$
\begin{align*}
& a_{0}=-2, \quad a_{1}=\theta_{2}+E_{2} \theta_{0}, \quad a_{2}=0, \tag{A2.5,6,7}\\
& a_{3}=\theta_{3}+E_{2} \theta_{1}, \quad a_{4}=-\left(E_{2,0}+E_{2,1}\right), \tag{A2.8,9}\\
& a_{5}=\theta_{4}+E_{2} \theta_{2}+\frac{1}{2} E_{2}^{2} \theta_{0}, \quad a_{6}=0, \tag{A2.10,11}\\
& a_{7}=\theta_{5}+E_{2} \theta_{3}+\frac{1}{2} E_{2}^{2} \theta_{1}, \quad a_{8}=-\frac{1}{2}\left(E_{2,0}^{2}+E_{2,1}^{2}\right), \tag{A2.12,13}\\
& a_{9}=\theta_{6}+E_{2} \theta_{4}+\frac{1}{2} E_{2}^{2} \theta_{2}+\frac{1}{6} E_{2}^{3} \theta_{0}, \quad a_{10}=0, \tag{A2.14,15}\\
& a_{11}=\theta_{7}+E_{2} \theta_{5}+\frac{1}{2} E_{2}^{2} \theta_{3}+\frac{1}{6} E_{2}^{3} \theta_{1}, \tag{A2.16}
\end{align*}
$$

$$
\begin{align*}
& a_{12}=-\frac{1}{6}\left(E_{2,0}^{3}+E_{2,1}^{3}\right), \tag{A2.17}\\
& a_{13}=\theta_{8}+E_{2} \theta_{6}+\frac{1}{2} E_{2}^{2} \theta_{4}+\frac{1}{6} E_{2}^{3} \theta_{2}+\frac{1}{24} E_{2}^{4} \theta_{0}, \tag{A2.18}\\
& a_{14}=0, \quad b_{0}=1, \quad b_{1}=-\theta_{1}, \tag{A2.19,20,21}\\
& b_{2}=0, \tag{A2.22,23}
\end{align*} b_{3}=-\theta_{0} . \quad . \quad .
$$

References

Banerjee K, Bhatnagar S P, Choudhry V and Kanwal S S 1978 Proc. R. Soc. A $\mathbf{3 6 0} 575-86$
Gibson W G 1984 J. Phys. A: Math. Gen. 17 1877-90
Hill R N 1968 J. Math. Phys. 9 1534-47
Hioe F T, MacMillen D and Montroll E W 1978 Phys. Rep. 43 305-35
Hioe F T and Montroll E W 1975 J. Math. Phys. 16 1945-55
Kirkwood J G 1933 Phys. Rev. 44 31-7
Miller W H 1971 J. Chem. Phys. 55 3146-9
Pant M M and Mitra S K 1979 Chem. Phys. Lett. 62 495-8
Schwartz M 1976 J. Stat. Phys. 15 255-61
Wigner E 1932 Phys. Rev. 40 749-59
Witschel W 1980 Chem. Phys. Lett. 71 131-4

- 1981 Z. Naturf. 36a 481-8

Witschel W and Bohmann J 1980 J. Phys. A: Math. Gen. 13 2735-50

