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Abstract. A method of successive approximation involving two-point Pad6 approximants 
developed in a previous paper is applied to the quartic oscillator and to the anharmonic 
oscillator with quartic anharmonicity. The input data are the first three energy levels and 
the coefficients in a high-temperature series derived from the first three terms of the 
Wigner-Kirkwood series. The method gives an approximate expression for the partition 
function which is then differentiated to find the internal energy and the heat capacity. 
Good results are obtained at all temperatures and for a wide range of anharmonicities. 

1. introduction 

This paper is concerned with the equilibrium thermodynamics of a quantum system 
with the Hamiltonian 

H = p 2 / 2 m +  V ( x )  (1.1) 

V (  x )  = 4mw2x2 + px4 (1.2) 

where 

with p > 0. 
The energy eigenvalues E,, of this system have been extensively investigated, the 

most comprehensive study being that of Hioe and Montroll (1975) (see also Hioe et 
a1 1978). They develop numerical methods for obtaining very accurate eigenvalues, 
and also give formulae for approximating E,, in various ( A ,  n )  regions. (A = p h / m 2 w 3 . )  
These eigenvalues can then be used to calculate the various thermodynamic properties 
of the system. This procedure works well at low temperatures (low T )  where only a 
few eigenvalues are needed, but is less satisfactory at high temperatures (high T) where 
many terms must be included in order to achieve reasonable accuracy. 

An early investigation is that of Schwartz (1976), who used the Hioe-Montroll 
eigenvalues to calculate numerically the heat capacity (results given graphically only), 
and to develop low-T and high-T approximations which, however, have only very 
restricted validity (Witschel and Bohmann 1980). 

Pant and Mitra (1979) used an interpolation formula to approximate the energy 
eigenvalues for all n and A 5 0, and then used these values to calculate the heat capacity. 
The accuracy of their approximation depends on A and n, and although they show 
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1892 W G Gibson 

how systematically to improve the interpolation formula, this destroys the simplicity 
of the method. 

A somewhat different approach was taken by Witschel and Bohmann (1980). They 
used variational methods to derive upper and lower bounds to the partition function, 
and also calculated terms in a perturbation expansion up to second order in A. Again, 
these techniques work quite well in some regions, but fail badly in others. In a 
subsequent paper (Witschel 1981) these bounds are supplemented by the first Wigner- 
Kirkwood (WK) correction term, which gives good high-temperature results. 

In the present work, we apply a method of successive approximation involving 
two-point Pad6 approximants (Gibson 1984. This paper will subsequently be referred 
to as I). This enables us to calculate accurate values of the partition function for all 
temperatures and for all values of A P 0.01. The input for this method is the first three 
energy levels, and a high-T expansion which is derived from the first three terms of 
the WK series. The approximate partition function is given in analytic form, and can 
be differentiated to find the internal energy and heat capacity. The whole calculation 
parallels that given for the harmonic oscillator in I. 

Before treating the anharmonic oscillator with potential (1.2), we do the corres- 
ponding calculations for the pure quartic oscillator with potential 

V ( x )  = px4. (1.3) 
This case is simpler in that there is only one parameter involved, and only one set of 
eigenvalues is needed. Previous work on the thermodynamics of this system includes 
that of Miller (1971), Schwartz (1976), Witschel and Bohmann (1980), and Witschel 
(1980). 

2. Quartic oscillator 

2.1. Partition function 

For the quartic oscillator with potential (1.3) the partition function is 
U- 

n=O 

where .T= p(h2p1/Z/m)2/3.  Accurate values of E,  are given by Hioe and Montroll 
(1975). At low T, we approximate Q by the first three terms of this series: 

7-m (2.2) Q-e-"0+e-"l+e-~'2+, . . ,  

where 

E O  = 0.667 986 259, = 2.393 644 02, ~2 = 4.696 795 39. 

At high T the WK series is applicable. The classical limit plus the first two correction 
terms are (see appendix 1 for details) 

Q = a , ,~ - "~  + a, 73/4 + a 2 ~ 9 / 4  + O( T ~ " ~ ) ,  T + o  (2.3) 
where 

a. = 1-(*)/2(2~p", a1 = -1-(:)/4(2#~, a2 = i i r ( $ ) / 9 6 0 ( 2 ~ ) ' / ~ .  
After making the change of variable U = d l 4  we can implement the approximation 



Pad6 method for quantum system: 11. Anharmonic oscillator 1893 

scheme of I, using successively 1, 2 and 3 terms from each of (2.2) and (2.3). Let 

be the Nth  diagonal Pad6 approximant (see the appendix of I). The results are 

Q = e-'ou4( a0/ u 3  + [3/3]), (2.5) 

(2.6) 

(2.7) 

Q = e-EoU4 + e-'lU4( ao/ u 3  + [6/6]), 

Q = e - 4  + e-E1U4+ e-E2U4(a0/ u 3  +[9/93). 

The coefficients for these three Pad6 approximants are given in table 1. 

Table 1. Coefficients for the Pad6 approximants in equations ( 2 . 5 ) ,  (2.6) and ( 2 . 7 )  

0 0.0 1 .o 
1 0.483 091 0.483 091 
2 0.233 377 0.233 377 
3 1.382 734 1.382 734 
4 
5 
6 
7 
8 
9 

-1.0 1 .o -2.0 
2.367 576 -0.636 482 1.864 889 

-1.113463 0.011 653 0.230 354 
-0.076 145 -0.025 900 0.079 869 
-0.846 352 -0.846 352 0.599 496 

0.851 811 0.851 811 0.315 669 
0.069 476 0.069 476 0.441 453 

-0.537 381 
1.262 858 
0.033 784 

1 .o 
0.765 928 
1.185 653 
1.912 635 

-0.264 167 
0.884 599 
0.465 886 

1.262 858 
0.033 784 

-0.537 381 

All the poles of these approximants lie outside the region of analyticity of Q (which 
is larg ut < ~ 1 8 ) .  We have also calculated a number of other approximants using 
different combinations of terms from (2.2) and (2.3) and found that the situation is 
qualitatively similar to that of the rigid rotator (§  4 of I): the inclusion of too many 
high-T terms causes poles to appear in larg U /  < ~ / 8 ;  the inclusion of too few leads 
to slow convergence in the intermediate-to-large temperature range. The approxima- 
tions (2.5)-(2.7) lie between these two cases. 

Some values calculated from each of these approximations are shown in table 2. 
The exact values are calculated from (2.1), using values for E,  given by Hioe and 
Montroll (1975). For n 6 10 we use the nine-figure values listed in table IV of that 
paper (note the misprint in Eo-it should be 0.667. .  . ), and for n 2 11 we use the 
wKB-type approximation (Hioe and Montroll 1975) 

(2.8) 
which is accurate to at least eight significant figures in this region, 

A comparison of table 2 with the corresponding table for the simple harmonic 
oscillator (table 1 of I) shows that convergence is similar, though a bit slower in the 
present case. However, the third approximation (2.7) is giving four-figure accuracy, 
and this is satisfactory. 

E ,  = 1.376 507 40[n  +4+0.026 5Ol (n+f ) ]" l ' ,  
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Table 2. Comparison of different approximations to the partition function for the quartic 
oscillator. I, I1 and 111 are from equations (2.5), (2.6) and (2.7) respectively. EXACT is 
from (2.1) using the eigenvalues of Hioe and Montroll(1975). ( - n )  means the correspond- 
ing entry is to be multiplied by IO-". 

7-1 I I1 111 EXACT 

0.1 1.296 39 (-3) 1.255 95 (-3) 1.255 95 (-3) 1.255 95 (-3) 
0.5 3.138 04 (-1) 2.736 68 (-1) 2.713 19 (-1) 2.713 21 (-1) 
1.0 7.181 13 (-1) 6.331 95 (-1) 6.137 51 (-1) 6.138 50 (-1) 
2.0 1.28781 1.168 89 1.14649 1.146 76 
5.0 2.51545 2.389 10 2.381 96 2.382 06 

10.0 4.151 68 4.047 26 4.045 21 4.045 24 

2.2. Thermodynamic quantities 

As pointed out in 0 2.2 of I, we can find thermodynamic quantities either by differentiat- 
ing the partition function, or by developing further series and fitting Pad6 approximants 
to them. Our experience with the harmonic oscillator indicates that the differentiation 
method works well, and as it is the easiest to implement we use it here also. Thus we 
have calculated the internal energy and heat capacity using our approximations for Q, 
(2.5)-(2.7), in equations (2.11) and (2.12) of I. Analytic differentiation becomes 
cumbersome for the higher approximations so we have differentiated numerically, a 
procedure which is fast and accurate for this type of function. 

Table 3 shows values of E = (A2p1'2/m)-2'3E and Cv/k calculated using (2.7). 
These are compared with the exact values calculated from 

and 

1 "  
Q n = ~  

C,/ k = - 1 ( TE,,)' e-". - ( T E ) ' ,  (2.10) 

using the Hioe-Montroll eigenvalues E,, as discussed in 9 2.1 above. The agreement 

Table 3. Internal energy E and heat capacity Cv/k for the quartic oscillator. The 
approximate values are from differentiating (2.7). The exact values are from (2.9) and 
(2. IO). 

E C"lk 

7- APPROX. EXACT APPROX. EXACT 

0.1 0.667 986 0.667 986 9.538 34 (-6) 9.538 34 (-6) 
0.722 222 0.722 246 0.373 995 0.374 352 0.5 

1.0 0.991 841 0.992 193 0.631 836 0.632 006 
2.0 1.674 80 1.674 43 0.709 678 0.708 939 

0.738 896 0.739 026 5.0 3.862 97 3.862 40 
7.579 91 0.746 004 0.746 041 

100.0 75.025 4 75.025 4 0.749 873 0.749 873 
10.0 7.580 09 
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is satisfactory-the approximant values are very accurate in the low- T and high-T 
regions, and no more than 0.1 YO in error at medium temperatures. 

Thus we have established that our approximation scheme works well for the quartic 
oscillator, and we now apply it to the more complicated case of the anharmonic 
oscillator. 

3. Anharmonic oscillator 

The partition function for the anharmonic oscillator with potential (1.2) is 

where t = phu  and E,  is now measured in units of hu. A complication is that the En's 
are no longer constants, but depend on the potential strength through the parameter 
A =pi i /m2u3 .  

At low T, Q is represented by the leading terms of (3.1). At high T we again use 
the WK series, and the first three terms are given in appendix 1. However, unlike the 
quartic oscillator case, these no longer yield single terms but rather infinite series in 
powers of t"'. These series are truncated and combined to give the following high-T 
expansion (see appendix 1 for details): 

Q = eo u - ~  + e l  U- + e2 U + . . . + e8 U l 3  + o( U 9 ,  U + O  (3.2) 

where U = t ' / 4 ,  and the 6,'s are functions of A given explicitly by equations (A1.13)- 
(A1.21) of appendix 1. It is important to note that (3.2) is not the WK series, but 
rather a rearrangement of it. The WK series gives an expansion for Q in powers of 
h', with coefficients that are functions of p (see equations (Al.l)-(A1.4)). We have 
expanded these coefficients in powers of p"', and then collected terms so that we 
have a series in powers of p'/' with coefficients that are functions of h. 

At this stage the problem essentially parallels that of the quartic oscillator, with 
the added complication that the energy levels E,, and the coefficients 0, are functions 
of A. Thus the Pad6 fitting must be done for each value of A-however, this is not 
too serious a drawback since the whole procedure is readily programmed for computer 
and can be re-run for each A value. 

We have calculated a number of approximations to Q, and found that the behaviour 
is similar to that found for the quartic oscillator. Again, one has to maintain a balance 
between low-T and high-T terms in order to keep poles out of the region larg U (  < ~ / 8 .  
We do not give details of all these approximations, but instead concentrate on the 
third, which uses the first three energy levels and all the coefficients, Bo to Os, of (3.2). 
The detailed equations are given in appendix 2. The highest order approximant which 
can be formed is [9/9]. However, this has a defect (pole-zero pair) on the positive 
real axis, the exact position depending on the value of A. Although the numerical 
values at points away from this defect are very good, we prefer to use the [8/8] 
approximant formed from a. to a IZ  and bo to b3 of appendix 2. This has no singularities 
in larg U I  < 7r/8 and is thus reliable for all real U. In this approximation Q is given by 



1896 W G Gibson 

Table 4 lists the values of the coefficients in [8/8] for A =0.01, 1.0 and 50.0 and table 
5 shows values of Q, E l f i o  and Cv/k for A =0.01, 1.0 and 50.0. 

Table 4. Coefficients for the Pad6 approximant in equation (3.3) for various values of A. 

A = 0.01 A = 1.0 A = 50.0 

n P" 4. PI? q n  P" 4. 

-2.0 
10.726 288 
9.181 599 

10.937 514 
11.522 496 
6.067 855 
2.132 229 
1.417 199 
0.287 493 

1.0 
1.172 850 
3.074 943 
3.564 254 
2.987 952 
3.056 494 
0.949 284 
0.306 077 
0.287 493 

-2.0 
1.928 799 
0.558 472 
0.131 786 
0.921 132 
0.202 202 
0.768 983 

-0.090 532 
1.686 229 

1 .o 
0.919 744 
1.453 694 
2.293 556 
0.103 303 
1.323 277 
0.805 236 

-0.296 618 
1.686 229 

-2.0 
2.388 578 
0.561 663 
0.403 372 
2.536 610 
0.453 326 
4.883 461 

19.636 563 
-3.011 433 

1 .o 
1.176 952 
2.510 007 
5.530 977 

-0.140 564 
5.761 979 
4.903 865 

-3.139 069 
19.636 563 

The approximate values are calculated from (3.3) and its derivatives. The exact 
values are obtained by using the energy eigenvalues E,, in (3.1) for Q, and in equations 
analogous to (2.9) and (2.10) for E/hw and Cv/k. The method used for calculating 
E, depends on A and n. For A = 50.0 and 1.0, we use the accurate values for n S 8 
and, for n > 8, the wm-type formula (Hioe and Montroll 1975) 

E, -- CA '13[n + f + 6/ (  n + aA - ' I 3 [  n +; + 6/ (  n +f)p3 + bA-', (3.4) 

where C = 1.376 507 40, a = 0.268 055 493, b = -0.01 1 674 983 and 6 = 0.026 50. 
The accuracy of (3.4) depends both on n and on A :  it is more accurate for large A, 
but even for A as small as 0.1 it still gives five-figure accuracy for n = 8. However, 
for A = 0.01 (3.4) is no longer accurate enough (even for quite large n ) ,  and there is 
no other simple formula valid in this region. We therefore calculated the first 50 
energy levels, accurate to at least six decimal places, using the method of Banerjee et 
a1 (1978). These are sufficient to give Q, Elfiw and Cv/ k to six figures for t - 'S  0.3; 
at higher temperatures the accuracy is reduced, and in table 5 we give only the number 
of decimal places we consider to be valid. 

It is seen from table 5 that agreement between approximate and exact results is 
excellent for A = 50.0 and 1.0, and still good for A = 0.01. We would expect our scheme 
to become increasingly inaccurate as A becomes very small, since the region of validity 
of both the high- T and the low-T series is diminished. This can be seen by examining 
the A-dependence of 8, and E,: as A decreases, the 8,'s become larger (see equations 
(A1.13)-(A1.21)), and the terms in (3.2) fall off more slowly. Correspondingly, the 
En's become smaller and more closely spaced, so that more terms are needed in (3.1) 
to achieve the same accuracy. In particular, the 8,'s diverge as A + 0, and the harmonic 
oscillator results are not recovered in this limit. This divergence can be traced to the 
expansion we have made in evaluating the WK coefficients (see appendix 1)-expanding 

in (A1.8) and integrating term by term is invalid when A = O .  e-axz 
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This non-commutivity of the limits A + 0 and T +  0;) is also apparent in figure 1, 
where we graph the heat capacity as a function of temperature for A =0 ,  0.01, 1.0 
and 50.0. (The values are either exact or approximate; the difference does not show 
on a graph of this scale.) As T + 00, C,/ k + 0.75, except for the case A = 0 where the 
limit is 1. Thus, although the A = 0 and A = 0.01 curves are close at low T, they separate 
as T increases. As already pointed out by other authors (Hioe and Montroll 1975, 
Schwartz 1976) this is related to the fact that, even for very small anharmonicity, the 
quartic term still dominates for sufficiently large mean displacement of the oscillator 
from its equilibrium position. Since the contribution to thermodynamic quantities 
from such states becomes increasingly important at high T, the limiting behaviour is 
that of a quartic oscillator. 

0.8 I 

f - '  

Feure 1. Heat capacity for the anharmonic oscillator as a function of temperature, for 
A =0, 0.01, 1.0 and 50.0. 

4. Conclusion 

We have shown that the method of successive approximation developed in I is applicable 
to the quartic oscillator and to the anharmonic oscillator for a wide range of values 
of A. Since the method uses only low- T and high- T information, it completely side-steps 
the problem of calculating a large number of high energy levels, or of using approxima- 
tions for them. This is particularly useful in the case of the anharmonic oscillator with 
A small, since here there is no simple asymptotic formula for E,  when n is large. But 
even in the other cases the Pad6 approximant method is still a simpler and more 
economical way of investigating the medium-to-high-temperature behaviour. 

The scheme is also straightforward mathematically. The most tedious part is 
calculating the coefficients in the high- T series for Q. The remainder consists of solving 
a set of linear equations to find the Pad6 coefficients, and subsequent (numerical) 
differentiation if E and Cv are required. 

It is envisaged that the method has application to more complex systems, where 
the calculation of many energy eigenvalues is either difficult or impossible with current 
methods. Examples are the double well anharmonic oscillator (Witschel 1981) and 
systems of coupled oscillators (Witschel and Bohmann 1980, Hioe et a1 1978). 
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Appendix 1. Wigner-Kirkwood expansion 

The WK expansion (Wigner 1932, Kirkwood 1933) has the form 

Q =  QC+-Ql+ h2P 
2m 

In the one-dimensional case the leading terms are (e.g. Hill 1968): 

(Al . l )  

(A1.2) 

(A1.3) 

(A1.4) 

For the quartic oscillator potential (1.3) the integrals in (A1.2)-(A1.4) are straight- 

QC = [r(a)/2(2.~)”’]7-~/“, (A1.5) 

forward, and we get: 

(A1.6) 

(A1.7) 

where T = p(hZp1/2/m)2/3. It can be seen on dimensional grounds that the next term, 
(h2p/2m)3QIII, must be proportional to 7 l5I4 .  Thus we have established (2.3). 

For the anharmonic oscillator potential (1.2) we strike integrals of the type 
m 

I ,  = I_, X n  e-*x4 d x. (A1.8) 

These can be evaluated in terms of parabolic cylinder functions (Witschel 1981), but 
for our purposes it is better to expand the first exponential and integrate term by term. 
This procedure leads to: 

(A1.9) 
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+ [ 24r ( 2 n ~ 9 ) - 4 0 r ( ~ ) + 3 r ( ~ ) ] ( ~ )  - 

+ [ 8r( y) - 4r (  F) ] (2) + r (7) (2) ’1. (Ai .  11) 

(A1.lO) has previously been obtained by Witschel (1981). It is again clear that the 
next term in (Al . l )  is O(t15/4) so weneed only keep termsupto tl3l4in (Ala9)-(A1.l1). 
Adding the truncated series and collecting terms gives 

Q = C e n t ( 2 n - 3 ) / 4  + o(t1514).  
8 

n=O 
(Al.  12) 

If we introduce 6 = r(:)/(27r)”’ and 77 = I‘(2)/(27r)”’, these coefficients are: 

eo = ( 6 / 2 ) ~ - ’ / ~ ,  e, = - (77 /4 )~ -3 /4 ,  e2 = ( [ / 6 4 ) P 4 ,  (~1 .13 ,14 ,15 )  

e3 = - ( ~ / i 2 8 ) ( i  + 3 2 P ) ~ - ~ / ~ ,  e4= ( 5 / 1 2 2 8 8 ) ( 5 + 1 2 8 ~ ~ ) ~ - ~ / ~ ,  ( ~ i . i 6 , 1 7 )  

Os = -(7/122880)(21+ 1600A2)A-”/4, 

66 = ( 6 /  5898240) (45 + 5760A + 675 84A ‘) A -’ ,I4, 

0 7  = -( T /  11796480)(33 + 6240A2+ 153600A4)A-’5/4, 

O8 = (6/5284823044)( 585 + 152320A2+ 9920512A4)A-17/4. 

Appendix 2. Third approximation for anharmonic oscillator 

For the third approximation we define 

Q, =e’€~(~-e- ‘€~-e- ‘E, ) .  

Setting t = u4, expanding the exponentials and using (3.2) for Q leads to 

Q,- e 0 ~ - 3 -  e lu - ,  = 6, 
where 

14 

n=O 
d3= a n u n + ~ ( u l ’ ) ,  u + o ,  

d3 = C b,u-” + O [ e ~ p ( - E , , ~ u ~ ) ] ,  U + W .  
n =o 

The coefficients are: 

(A1.18) 

(A1.19) 

(A1.20) 

(A1.21) 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

a, = -2, U, = e2 + E2eo, U 2  = 0, (A2.5,6,7) 

a, = e, + E2el ,  a4=- (E2 ,0+&,1) ,  (A2.8,9) 

us = e4 + &e2 +$E:eO, U6 = 0, (A2.10,l l)  

u7 = es + E2e3 +@:e,, (A2.12, 13) 

a,= e,+ E 2 e 4 + $ E : e 2 + ~ E ~ e 0 ,  a10 = 0, (A2.14,15) 

U,, = e 7 + ~ 2 e 5 + $ ~ : e 3 + i ~ : e 1 ,  (A2.16) 

a8 = -$(E;,o+E:,i), 
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a12 = -?. 6 ( G , 0 +  G,lL (A2.17) 

a13 = es + (A2.18) 

a14 = 0, bo=1 ,  bl=-81, (A2.19,20,21) 

b2=0, b3z-60. (A2.22,23) 

e6 + ;E; e4 +;E: e2 +&&:eo, 
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